The role of cystatin-C in the confirmation of reduced glomerular filtration rate among the oldest old

Lisandro D. Colantonio¹, Rikki M. Tanner¹, David G. Warnock², Orlando M. Gutiérrez^{1,2}, Suzanne Judd³, Paul Muntner^{1,2}, C. Barrett Bowling^{4,5}

¹Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA

²Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA ³Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA

⁴Birmingham/Atlanta Geriatric Research, Education, and Clinical Center, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA ⁵Department of Medicine, Emory University, Atlanta, GA, USA

Submitted: 5 May 2015 Accepted: 28 July 2015

Arch Med Sci 2016; 12, 1: 55–67 DOI: 10.5114/aoms.2016.57580 Copyright © 2016 Termedia & Banach

Abstract

Introduction: Current guidelines suggest using cystatin-C to confirm a reduced creatinine-based estimated glomerular filtration rate (eGFR_{cr}) when the latter is thought to be inaccurate. Older adults have reduced muscle mass, which may affect the accuracy of eGFR_{cr}. We evaluated the use of cystatin-C-based eGFR (eGFR_{cys}) to confirm reduced eGFR_{cr} among adults \geq 80 years of age and, for comparison, younger adults.

Material and methods: We analyzed data from 3,059 REasons for Geographic And Racial Differences in Stroke (REGARDS) study participants with reduced eGFR_{cr} (< 60 ml/min/1.73 m²) enrolled in 2003–2007 who were not on dialysis. eGFR_{cr} and eGFR_{cys} were calculated using age, sex and race-adjusted equations. Confirmed reduced eGFR_{cr} was defined as eGFR_{cys} < 60 ml/min/1.73 m². Prevalence of chronic kidney disease complications at baseline and all-cause mortality up to March 2012 were calculated. Analyses were stratified by age: < 65, 65–79 and \geq 80 years.

Results: Among participants < 65, 65–79 and \ge 80 years of age, 76.5%, 85.7% and 92.5%, respectively, had reduced eGFR_{cr} confirmed with eGFR_{cy} (p < 0.001). Among participants \ge 80 years of age, those with reduced eGFR_{cr} confirmed with eGFR_{cys} had higher prevalence of hypertension (79.1% vs. 65.1%, p = 0.03) and albuminuria (38.3% vs. 22.7%, p = 0.04) and higher risk for all-cause mortality (hazard ratio: 2.43; 95% confidence interval: 1.19–5.01) as compared with those in whom reduced eGFR_{cr} was not confirmed by eGFR_{cre}.

Conclusions: Reduced eGFR_c was confirmed using eGFR_{cys} for the vast majority of adults \geq 80 years. These results suggest that using cystatin-C to confirm a reduced eGFR_c may not be necessary among the oldest old.

Key words: aged, 80 and over, kidney function tests, renal insufficiency, chronic, mortality.

Introduction

The number of US adults 80 years and older (hereafter, the oldest old) with reduced estimated glomerular filtration rate (eGFR, < 60 ml/min/1.73 m²) has increased over the last 20 years and is expected to

Corresponding author:

C. Barrett Bowling MD, MSPH Atlanta VAMC 1670 Clairmont Road (11B) Decatur, GA, 30033, USA Phone: (404) 321-6111 Fax: (404) 728-7779 E-mail: cbbowli@emory.edu more than double to 9.9 million people by 2030 [1, 2]. Despite studies showing associations of reduced eGFR with increased risk for mortality, cardiovascular disease and concurrent chronic kidney disease (CKD) complications [3–7], questions remain about the use of creatinine-based equations alone to estimate GFR and define CKD in this population [8].

The 2012 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the Evaluation and Management of CKD recommends using creatinine-based equations for initial assessment of CKD [9]. The guideline also suggests using serum cystatin-C as an additional test in circumstances when estimations based on serum creatinine are thought to be inaccurate [9]. Sarcopenia, defined as a progressive loss of skeletal muscle mass, is more common at older age [10, 11]. Because serum creatinine is a product of muscle metabolism, sarcopenia could affect the accuracy of serum creatinine-based equations to estimate GFR [9]. Therefore, there may be a greater need to confirm reduced eGFR based on serum creatinine among the oldest old.

In the current study, we estimated the percentage of the oldest old with reduced eGFR calculated using serum creatinine confirmed with serum cystatin-C eGFR. For comparison, this percentage was also calculated for younger adults. We hypothesized that among individuals with reduced serum creatinine-based eGFR, the percentage with reduced eGFR based on serum cystatin-C would be lower among the oldest old compared with younger adults. In addition, we compared the prevalence of concurrent CKD complications and risk for allcause mortality among adults with serum creatinine-based reduced eGFR confirmed versus not confirmed by serum cystatin-C-based eGFR by age group. For completeness, we also analyzed the use of serum cystatin-C for the confirmation of a preserved eGFR based on serum creatinine.

Material and methods

Study population

We used data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) study, a US population-based prospective cohort study designed to investigate reasons underlying the higher rate of stroke mortality among blacks compared with whites and residents of the Southeastern US compared with the rest of the continental US [12]. A total of 30,239 black and white men and women aged 45 years or older were recruited from all 48 contiguous US states and the District of Columbia between January 2003 and October 2007. Blacks and residents of the Southeastern US were oversampled by design. For the present analysis, we included participants who were not on dialysis, had measurements of serum creatinine and cystatin-C at baseline, and follow-up information on all-cause mortality. A total of 27,528 REGARDS participants met the inclusion criteria (Figure 1). The REGARDS study was approved by the institutional review boards at the participating centers and all participants provided written informed consent.

Baseline assessment

REGARDS baseline data were collected through a telephone interview followed by an in-home examination, each performed by trained staff and following standardized protocols. Self-reported information collected during the telephone interview at baseline included age, race, gender, education, physical activity, current cigarette smoking,

Figure 1. Flow-chart of REGARDS participants included in the study

 $eGFR_{\alpha}$ – estimated glomerular filtration rate using serum creatinine, REGARDS – REasons for Geographic And Racial Differences in Stroke. Reduced $eGFR_{\alpha}$ was defined as $eGFR_{\alpha} < 60$ ml/min/1.73 m². Preserved $eGFR_{\alpha}$ was defined as $eGFR_{\alpha} > 60$ ml/min/1.73 m².

history of stroke and use of antihypertensive medications. During the in-home examination, blood pressure, weight, height and waist circumference were measured, an electrocardiogram was recorded, and blood and urine samples were collected. Prescription and over-the-counter medications used in the 2 weeks prior to the in-home examination were reviewed and recorded.

History of coronary heart disease (CHD) was defined by self-report of a prior diagnosis or evidence of a previous myocardial infarction (MI) on the study electrocardiogram, coronary bypass, coronary angioplasty, or coronary stenting. Diabetes was defined as self-reported treatment with oral antidiabetes medication or insulin, fasting (≥ 8 h) serum glucose ≥ 126 mg/dl or non-fasting serum glucose ≥ 200 mg/dl. High waist circumference was defined as > 102 cm among males and > 88 cm among females. Body mass index (BMI) was calculated as weight in kg/(height in meters)², and categorized as < 18.5, 18.5 to < 25.0, 25.0 to < 30.0 and ≥ 30.0 kg/m². Use of statins was defined based on the in-home review of medications.

Glomerular filtration rate

Serum creatinine and cystatin-C were measured using blood samples collected during the baseline in-home assessment. Serum creatinine was measured and calibrated using an isotope-dilution mass spectrometry traceable method [4]. Cystatin-C was measured using a particle-enhanced immunonephelometric assay (N Latex Cystatin C, formerly Dade Behring, now Siemens AG, Munich, Germany). For each participant, eGFR was calculated using serum creatinine (eGFR_{cr}) and, separately, using serum cystatin-C (eGFR_{cys}) and the age, race, sex Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations [13]. eGFR_{cr} and eGFR_{cvs} were each categorized as preserved (GFR \geq 60 ml/min/1.73 m²) or reduced (< 60 ml/min/1.73 m²). Also, we calculated eGFR using a CKD-EPI equation that includes the combination of serum creatinine and cystatin-C (eGFR_{crevs}) and the two versions of the Berlin Initiative Study (BIS) equation (eGFR_{BIS1} and eGFR_{BIS2}) [13, 14]. Table I shows the equations used for the present analysis.

Concurrent CKD complications and all-cause mortality

Concurrent CKD complications considered for the present analysis included hypertension, serum albumin concentration < 3.8 g/dl, anemia, high-sensitivity C-reactive protein (hsCRP) > 3 mg/l and urinary albumin-to-creatinine ratio (ACR) > 30 mg/g. Blood pressure was measured

Table I. Equat	tions used to calc	ulate estimated gl	lomerular filtration rate	

eGFR	Gender	Scys [mg/l]	Scr [mg/dl]	Equation
eGFR _{cr} [13] ^a	Female	-	≤ 0.7	144 × (Scr/0.7) ^{-0.329} × 0.993 ^{Age} [× 1.159 if black]
	Female	-	> 0.7	144 × (Scr/0.7) ^{-1.209} × 0.993 ^{Age} [× 1.159 if black]
	Male	-	≤ 0.9	141 × (Scr/0.9) ^{-0.411} × 0.993 ^{Age} [× 1.159 if black]
	Male	-	> 0.9	141 × (Scr/0.9) ^{-1.209} × 0.993 ^{Age} [× 1.159 if black]
eGFR _{cys} [13]	-	≤ 0.8	-	133 × (Scys/0.8) ^{-0.499} × 0.996 ^{Age} [× 0.932 if female]
	-	> 0.8	-	133 × (Scys/0.8) ^{-1.328} × 0.996 ^{Age} [× 0.932 if female]
eGFR _{cr,cys} [13]	Female	≤ 0.8	≤ 0.7	130 × (Scr/0.7) ^{-0.248} × (Scys/0.8) ^{-0.375} × 0.995 ^{Age} [× 1.08 if black]
	Female	≤ 0.8	> 0.7	130 × (Scr/0.7) ^{-0.601} × (Scys/0.8) ^{-0.375} × 0.995 ^{Age} [× 1.08 if black]
	Female	> 0.8	≤ 0.7	130 × (Scr/0.7) ^{-0.248} × (Scys/0.8) ^{-0.711} × 0.995 ^{Age} [× 1.08 if black]
	Female	> 0.8	> 0.7	130 × (Scr/0.7) ^{-0.601} × (Scys/0.8) ^{-0.711} × 0.995 ^{Age} [× 1.08 if black]
	Male	≤ 0.8	≤ 0.9	135 × (Scr/0.9) ^{-0.207} × (Scys/0.8) ^{-0.375} × 0.995 ^{Age} [× 1.08 if black]
	Male	≤ 0.8	> 0.9	135 × (Scr/0.9) ^{-0.601} × (Scys/0.8) ^{-0.375} × 0.995^{Age} [× 1.08 if black]
	Male	> 0.8	≤ 0.9	135 × (Scr/0.9) ^{-0.207} × (Scys/0.8) ^{-0.711} × 0.995 ^{Age} [× 1.08 if black]
	Male	> 0.8	> 0.9	135 × (Scr/0.9) ^{-0.601} × (Scys/0.8) ^{-0.711} × 0.995^{Age} [× 1.08 if black]
eGFR _{BIS1} [14]	-	-	_	3736 × Scr ^{-0.87} × Age ^{-0.95} [× 0.82 if female]
eGFR _{BIS2} [14]	-	_	-	767 × Scys ^{-0.61} × Scr ^{-0.40} × Age ^{-0.57} [× 0.87 if female]

BIS – Berlin Initiative Study, eGFR – estimated glomerular filtration rate, Scr – serum creatinine, Scys – serum cystatin-C. "This equation is also known as the CKD-EPI equation.

twice during the in-home study visit following a 5-minute rest. Based on the average of the two measurements, hypertension was defined as systolic blood pressure \geq 140 mm Hg, diastolic blood pressure \geq 90 mm Hg, or self-reported use of anti-hypertensive medications. Anemia was defined as hemoglobin concentration < 13.0 and < 12.0 g/dl for males and females, respectively [15].

REGARDS participants or their proxies are contacted by telephone every 6 months following the baseline study visit to determine vital status. Reported deaths and the date of death were confirmed through the Social Security Death Index, death certificates, or the National Death Index. For the current analysis, data on mortality for RE-GARDS participants up to March 29, 2012 were analyzed.

Statistical analysis

All analyses were conducted stratified by age: (1) < 65 years, (2) 65 to 79 years, and (3) \ge 80 years of age. The main analyses were limited to participants with reduced eGFR_{cr}. Among this group, participants with eGFR_{cys} < 60 ml/min/1.73 m² were considered to have confirmed reduced eG-FR_{cr}. We calculated baseline characteristics of participants whose reduced eGFR_{cys}. The percentage of participants with confirmed reduced eGFR_c across age strata was compared using a χ^2 test.

Table II. Missing data among REGARDS participants included in the analysis (n = 27,528). These data were imputed using chained equations

Variable ^a	N missing (%)
Less than high school	21 (0.1)
No physical activity	417 (1.5)
Current smoking	101 (0.4)
History of CHD	493 (1.8)
History of stroke	90 (0.3)
Diabetes	140 (0.5)
Waist circumference	150 (0.5)
Concurrent CKD complications:	
Hypertension	67 (0.2)
Serum albumin < 3.8 g/dl	7,561 (27.5)
Anemia	8,438 (30.7)
hsCRP > 3 mg/l	12 (< 0.1)
ACR > 30 mg/g	898 (3.3)

ACR – albumin : creatinine ratio, CHD – coronary heart disease, hsCRP – high sensibility C-reactive protein, REGARDS – REasons for Geographic And Racial Differences in Stroke. "Only variables with missing data are listed. The remainder of variables studied had no missing data. Hypertension was defined as systolic blood pressure \geq 140 mm Hg, diastolic blood pressure \geq 90 mm Hg, or self-reported use of antihypertensive medications. Anemia was defined as hemoglobin concentration < 13.0 g/dl and < 12.0 g/dl for males and females, respectively [15]. In addition, we calculated the percentage of participants whose reduced $eGFR_{cr}$ was confirmed using $eGFR_{cr,cys}$, $eGFR_{BIS1}$ and $eGFR_{BIS2}$. Among participants ≥ 80 years of age, we calculated the percentage whose reduced $eGFR_{cr}$ was confirmed using $eGFR_{cys}$ by level of waist circumference and, separately, BMI.

We calculated the prevalence of concurrent CKD complications among participants with and without confirmed reduced eGFR_{cr}, separately. Differences in the prevalence of concurrent CKD complications across these categories were determined using maximum likelihood. We used the Kaplan-Meier method to estimate cumulative mortality for participants with and without confirmed eGFR, with the statistical significance of differences determined using log-rank tests. Hazard ratios (HRs) for all-cause mortality comparing participants with versus without confirmed eGFR were estimated using Cox proportional hazard models. Three progressively multivariable adjusted Cox proportional hazard models were used. Model 1 included adjustment for age, race, gender, region of residence and eGFR_{cr}. Model 2 included adjustment for variables in Model 1 plus education level, physical activity, smoking, history of CHD, history of stroke, diabetes, waist circumference and statin use. Model 3 included adjustment for variables in Model 2 and hypertension, serum albumin < 3.8 g/ dl, anemia, hsCRP > 3 mg/l and ACR > 30 mg/g. In a regression model including all age groups and interaction terms, we assessed whether the HRs for all-cause mortality were different across age groups.

For completeness, we conducted analyses to confirm preserved eGFR_{cr}. For this secondary analysis, the percentage of participants whose preserved eGFR_{cr} (i.e., eGFR_{cr} \geq 60 ml/min/1.73 m²) was confirmed using eGFR_{cys} (i.e., eGFR_{cys} \geq 60 ml/min/1.73 m²), and separately using eGFR_{crs} \geq 60 ml/min/1.73 m²), and separately using eGFR_{crs} \in 67 R_{BIS1} and eGFR_{BIS2}, was calculated by age group. Among participants \geq 80 years of age, we calculated the percentage whose preserved eGFR_{cr} was confirmed using eGFR_{cys} by waist circumference and BMI, separately. Also, prevalence of concurrent CKD complications and HRs for all-cause mortality were estimated comparing participants whose preserved eGFR_{crs}.

Because a substantial proportion of REGARDS participants do not have baseline information on serum albumin and hemoglobin (Table II), we used multiple imputation when estimating the prevalence of concurrent CKD complications as well as multivariable adjusted HRs for all-cause mortality. For these analyses, we imputed 10 data sets using chained equations. Multiple imputation was based on observed values from all the variables included in the fully adjusted Cox regression model (Model 3) and all-cause mortality [16, 17]. All analyses were conducted using Stata/I.C. 13.1 (Stata Corporation, College Station, TX) and a 2-sided level of significance of α < 0.05.

Results

Confirmation of reduced eGFR_{cr}

A total of 3,059 (11.1%) participants included in the analysis had reduced eGFR_{cr} at baseline. Among participants with reduced eGFR_{cr} a higher percentage was confirmed using eGFR_{cys} among those \geq 80 years of age as compared with younger adults (Figure 2). The percentage whose reduced eGFR_{cr} was confirmed using eGFR_{crcys}, eGFR_{BIS1} and eGFR_{BIS2} was also higher among those \geq 80 years of age (Table III). Among those \geq 80 years of age, the percentage whose reduced eGFR_{cr} was confirmed by eGFR_{cys} was similar when stratified by waist circumference or BMI (Figure 3). Baseline characteristics of REGARDS participants whose reduced eGFR_{cr} are provided by age in Table IV.

Among participants \geq 80 years of age, those whose reduced eGFR_{cr} was confirmed using eGFR_{cys} had a higher prevalence of hypertension and ACR > 30 mg/g (Table V). Although presence of serum albumin < 3.8 g/dl, anemia and hsCRP > 3 mg/l were each more common among individuals whose reduced eGFR_{cr} was confirmed versus not confirmed using eGFR_{cr}, these differences were

Figure 2. Percentage of REGARDS participants with reduced $eGFR_{cr}$ for whom this result was confirmed using $eGFR_{cys}$ stratified by age

 $eGFR_{cr}$ – estimated glomerular filtration rate using serum creatinine, $eGFR_{cys}$ – estimated glomerular filtration rate using serum cystatin-C, REGARDS – REasons for Geographic And Racial Differences in Stroke. Reduced eGFR was defined as eGFR < 60 ml/min/1.73 m².

Table III. Percentage of REGARDS participants whose reduced $eGFR_{cr}$ was confirmed using $eGFR_{BIS1}$ or $eGFR_{BIS2}$ stratified by age

eGFR	< 65 years (n = 599)	65 to 79 years (n = 1,805)	≥ 80 years (n = 655)	P-value
	N (%)	N (%)	N (%)	_
eGFR _{cr,cys}	506 (84.5)	1,631 (90.4)	629 (96.0)	< 0.001
eGFR _{BIS1}	555 (92.7)	1,805 (100.0)	655 (100.0)	< 0.001
eGFR _{BIS2}	359 (59.9)	1,670 (92.5)	655 (100.0)	< 0.001

eGFR – estimated glomerular filtration rate. REGARDS – Reasons for Geographic And Racial Differences in Stroke. Reduced $eGFR_{cr}$ confirmed using $eGFR_{cross}$ $eGFR_{BIS1}$ or $eGFR_{BIS2}$ were defined as $eGFR_{cross}$ and $eGFR_{cross}$ $eGFR_{BIS1}$ or $eGFR_{BIS2}$ < 60 ml/min/1.73 m², respectively. Equations for $eGFR_{cross}$ $eGFR_{cross}$ $eGFR_{cross}$ $eGFR_{cross}$ $eGFR_{Cross}$ $eGFR_{Cross}$ $eGFR_{BIS1}$ or $eGFR_{BIS1}$ or $eGFR_{BIS2}$ < 60 ml/min/1.73 m², respectively. Equations for $eGFR_{cross}$ $eGFR_{Cr$

Figure 3. Percentage of REGARDS participants \geq 80 years of age with reduced eGFR_c for whom this result was confirmed using eGFR_{cr} stratified by waist circumference and body mass index

eGFR_a – estimated glomerular filtration rate using serum creatinine, eGFR_{os} – estimated glomerular filtration rate using serum cystatin-C, REGARDS – REasons for Geographic And Racial Differences in Stroke. Reduced eGFR was defined as eGFR < 60 ml/ min/1.73 m².

e
gg
>
9
eo
Ξ
at
st
Sć
Ř
5
e D
ũ
isi.
Ę
ĕ
F
Ē
ō
t t
ę
S
su
ē
~
eo
Е
Ξ
Ы
ũ
as
≥
~
Ē
1.1
e
ed eG
oed eG
duced eG
reduced eG
se reduced eG
nose reduced eG
whose reduced eC
s whose reduced eC
ints whose reduced eG
pants whose reduced eG
icipants whose reduced eG
urticipants whose reduced eG
participants whose reduced eG
)S participants whose reduced eG
RDS participants whose reduced eG
ARDS participants whose reduced eC
EGARDS participants whose reduced eC
REGARDS participants whose reduced eC
of REGARDS participants whose reduced eC
cs of REGARDS participants whose reduced eC
tics of REGARDS participants whose reduced eC
ristics of REGARDS participants whose reduced eC
teristics of REGARDS participants whose reduced eG
acteristics of REGARDS participants whose reduced eG
laracteristics of REGARDS participants whose reduced eC
characteristics of REGARDS participants whose reduced eC
ne characteristics of REGARDS participants whose reduced eC
line characteristics of REGARDS participants whose reduced eC
seline characteristics of REGARDS participants whose reduced eC
Baseline characteristics of REGARDS participants whose reduced eC
$m{\prime}$. Baseline characteristics of REGARDS participants whose reduced eC
IV. Baseline characteristics of REGARDS participants whose reduced eC
ble IV. Baseline characteristics of REGARDS participants whose reduced eC
Table IV. Baseline characteristics of REGARDS participants whose reduced eC

Parameter	< 65	years	65 to 7	'9 years	≥ 80	years
,	Reduced eGFR ₆ confirmed using eGFR ₀₉₅	Reduced eGFR _« not confirmed using eGFR ₉₉	Reduced eGFR _G confirmed using eGFR ₀₅	Reduced eGFR _« not confirmed using eGFR ₉₉₅	Reduced eGFR _a confirmed using eGFR _{vs}	Reduced eGFR _c not confirmed using eGFR ₀₅
Number of participants $(\%)^a$	458 (76.5)	141 (23.5)	1,547 (85.7)	258 (14.3)	606 (92.5)	49 (7.5)
Age, mean (SD) [years]	59.3 (4.0)	59.2 (4.3)	72.4 (4.2)	72.0 (4.11)	83.6 (3.2)	83.3 (3.0)
Men, n (%)	189 (41.3)	73 (51.8)	677 (43.8)	122 (47.3)	295 (48.7)	25 (51.0)
Black, n (%)	277 (60.5)	63 (44.7)	616 (39.8)	108 (41.9)	199 (32.8)	19 (38.8)
Region of residence, n (%):						
Stroke belt (buckle states)	110 (24.0)	26 (18.4)	340 (22.0)	42 (16.3)	122 (20.1)	8 (16.3)
Stroke belt (non-buckle states)	166 (36.3)	44 (31.2)	525 (33.9)	78 (30.2)	175 (28.9)	13 (26.5)
Other contiguous US states	182 (39.7)	71 (50.4)	682 (44.1)	138 (53.5)	309 (51.0)	28 (57.2)
Less than high school, n (%)	68 (14.9)	9 (6.4)	316 (20.4)	36 (14.0)	136 (22.6)	9 (18.4)
No physical activity, n (%)	215 (47.4)	41 (29.5)	727 (48.2)	70 (27.7)	317 (53.6)	15 (30.6)
Current smoking, n (%)	87 (19.0)	13 (9.3)	181 (11.7)	13 (5.0)	25 (4.1)	1 (2.1)
History of CHD, n (%)	136 (30.4)	26 (18.8)	543 (35.9)	50 (19.9)	201 (34.0)	9 (18.4)
History of stroke, n (%)	67 (14.8)	5 (3.6)	222 (14.4)	17 (6.6)	71 (11.8)	7 (14.3)
Diabetes, n (%)	234 (51.3)	30 (21.4)	564 (36.6)	55 (21.5)	165 (27.2)	4 (8.2)
High waist circumference, n (%)	316 (70.2)	64 (46.0)	918 (59.6)	100 (39.1)	270 (44.8)	18 (36.7)
Body mass index, n (%) [kg/m²]:						
< 18.5	1 (0.2)	1 (0.7)	17 (1.1)	4 (1.6)	16 (2.7)	1 (2.0)
18.5 to < 25.0	55 (12.4)	18 (13.0)	331 (21.5)	62 (24.2)	194 (32.2)	21 (42.8)
25.0 to < 30.0	115 (25.9)	56 (40.6)	550 (35.7)	121 (47.3)	246 (40.9)	21 (42.8)
≥ 30.0	273 (61.5)	63 (45.7)	643 (41.7)	69 (16.9)	146 (24.2)	6 (4.4)
Taking statins, n (%)	213 (46.5)	54 (38.3)	734 (47.5)	116 (45.0)	254 (41.9)	11 (22.5)
CHD – coronary heart disease, eGFR – esti. Reduced eGFR $_{\alpha}$ confirmed using eGFR $_{\alpha}^{s}$ ww. Equations for eGFR and eGFR are shown	imated glomerular filtration r as defined as $eGFR_{a}$ and eG r in Table I.	ate, REGARDS – REasons for Ge FR _{cys} < 60 ml/min/1.73 m². Redu	eographic And Racial Differen iced eGFR _c not confirmed u:	ices in Stroke, SD – standard de ing eGFR ₉₅ was defined as eGF	eviation, US – United States $\mathcal{R}_{a} < 60 \text{ ml/min/1.73 } m^{2} \text{ an}$. ^a Percentage within age group $d e G F R_{qs} \ge 60 m l/min/1.73 m^2$

Lisandro D. Colantonio, Rikki M. Tanner, David G. Warnock, Orlando M. Gutiérrez, Suzanne Judd, Paul Muntner, C. Barrett Bowling

Parameter		< 65 years		9	5 to 79 years		≥ 80	years	<i>P</i> -value
	Reduced eGFR _c confirmed using eGFR _{cvs}	Reduced eGFR _{cr} not confirmed using eGFR _{cvs}	P-value	Reduced eGFR _{cr} confirmed using eGFR _{cvs}	Reduced eGFR _a not confirmed using eGFR _{as}	<i>P</i> -value	Reduced eGFR _{cr} confirmed using eGFR _{ovs}	Reduced eGFR _c not confirmed using eGFR _{cs}	
Number of participants:	458	141		1,547	258		606	49	
Hypertension	90.6%	58.0%	< 0.001	83.4%	68.4%	< 0.001	79.1%	65.1%	0.03
Serum albumin < 3.8 g/dl	23.5%	4.2%	0.005	18.8%	9.2%	0.007	22.1%	8.6%	0.19
Anemia	45.3%	14.5%	< 0.001	36.8%	17.3%	< 0.001	35.3%	20.2%	0.08
hsCRP > 3 mg/l	60.9%	39.7%	< 0.001	51.6%	27.5%	< 0.001	40.4%	28.6%	0.11
ACR > 30 mg/g	50.5%	14.7%	< 0.001	37.1%	%6.6	< 0.001	38.3%	22.7%	0.04
ACR – albumin : creatinine ratio, CKi PGFR – confirmed using PGFR – was) – chronic kidney diseas defined as eGER and e	se, eGFR – estimated glor GFR – 60 ml/min/1 73	merular filtratio 1 m² Reduced et	n rate, hsCRP – high-sens GER not confirmed using	sitivity C-reactive protei a eGER was defined a	1, REGARDS: RE	asons for Geographic And Umin/1 73 m² and aGEB	d Racial Differences in St > 60 ml/min/1 73 m ²	roke. Reduced Fauations for

conjumea using ecirk_{os} was defined as ecirk_{os} < 60 m/min/1.73 m². Reduced eGFR_o not confirmed using eGFR_{os} defined as eGFR_{os} < 60 m//min/1.73 m² and eGFR_{os} < 60 m//min/1.73 m² end eGFR_{os} < 60 m//min/1.73 m² end eGFR_{os} < 60 m//min/1.73 m² and eGFR_{os} < 70 mm Hg, or self-reported use of antihypertensive medications. Anemia was defined as hemoglobin concentration < 13.0 and < 12.0 g/dl for males and females, respectively [15]. eGFR

Α

70

Figure 4. Cumulative mortality (Kaplan-Meier method) for REGARDS participants whose reduced eGFR, was confirmed versus not confirmed using eGFR_{cys} stratified by age

eGFR_a – estimated glomerular filtration rate using serum creatinine, eGFR_{cys} – estimated glomerular filtration rate using serum cystatin-C, REGARDS - REasons for Geographic And Racial Differences in Stroke. Reduced eGFR was defined as eGFR < 60 ml/min/1.73 m².

not statistically significant. Among participants

< 65 and 65 to 79 years, those whose reduced $eGFR_{cr}$ was confirmed with $eGFR_{cys}$ were more likely to have each concurrent CKD complication. There were 878 deaths over 15,874 person-years of follow-up (median follow-up of 5.4 years) among REGARDS participants with reduced

eGFR_{cr}. Within each age group, participants whose reduced eGFR_{rr} was confirmed using eGFR_{cys} had higher risk for all-cause mortality as compared with their counterparts whose eGFR_{cr} was not confirmed by eGFR_{cys} (Figure 4). The multivariable

< 65 years of age

Parameter	< 65	years	65 to 7	79 years	> 80	years	<i>P</i> -value ^a
	Reduced eGFR _c confirmed using eGFR _{cos}	Reduced eGFR, not confirmed using eGFR ₀₆	Reduced eGFR _{cr} confirmed using eGFR _{cvs}	Reduced eGFR _{er} not confirmed using eGFR _{ess}	Reduced eGFR _c confirmed using eGFR ₀₀₅	Reduced eGFR ₆ not confirmed using eGFR ₀₀₅	
Deaths/participants	115	5/599	472/	1,805	291	/655	
Hazard ratio (95% Cl):							
Model 1	7.67 (2.78–21.17)	1 (ref)	2.36 (1.58–3.51)	1 (ref)	3.07 (1.51–6.25)	1 (ref)	0.18
Model 2	5.54 (1.99–15.45)	1 (ref)	1.83 (1.22–2.74)	1 (ref)	2.61 (1.28–2.34)	1 (ref)	0.29
Model 3	4.48 (1.55–12.90)	1 (ref)	1.59 (1.06–2.40)	1 (ref)	2.43 (1.19–5.01)	1 (ref)	0.44
95% CI – 95% confidence intr across age strata. Preserved e 1ge, race, gender, region of re Wodel 3: Includes adjustment	eval, ACR – albumin : creative GFR was defined as $eGFR \ge$ sidence and $eGFR_{o}$ Model i is in Model 2 plus adjustmen	ine ratio, CHD – coronary hear 60 ml/min/1.73 m². Reduced e 2: Includes adjustments in Modi It for hypertension, serum albur	t disease, eGFR – estimate. GFR was defined as eGFR 'el 1 plus adjustment for ec min < 3.8 g/dl, anemia, hsi	d glomerular filtration rate, hs < 60 ml/min/1.73 m². Equatio tucation level, physical activit CRP > 3 mg/l and ACR > 30 mg	:CRP – high-sensitivity C-ree ns for eGFR _{er} and eGFR _{eys} an y, smoking, history of CHD, 3/g.	active protein. «Test for homog e shown in Table I. Model 1: Ir stroke, diabetes, waist circum	eneity of hazard ratios cludes adjustment for erence and statin use.

adjusted HRs (95% CI) for all-cause mortality for those whose reduced eGFR_{cr} was confirmed versus not confirmed by $eGFR_{cys}$ were 4.48 (1.55–12.90), 1.59 (1.06-2.40), and 2.43 (1.19-5.01), for those < 65 years, 65 to 79 years, and \geq 80 years old, respectively (Table VI; p-value for homogeneity of HRs across age strata: 0.44).

Confirmation of preserved eGFR_{cr}

Among those < 65 years, 65 to 79 years, and \geq 80 years old, 12,534 (93.7%), 7,930 (80.7%) and 687 (54.6%) participants, respectively, had their preserved eGFR_{cr} confirmed using eGFR_{cvs} (Table VII; p-value for homogeneity across age strata < 0.001). The percentage of those whose preserved eGFR_{cr} was confirmed using eGFR_{cr.cvs}, eGFR_{BIS1} and $eGFR_{BIS2}$ was also lower among participants ≥ 80 years of age (Table VIII). Among those \geq 80 years of age, the percentage whose preserved eGFR_{cr} was confirmed by $eGFR_{cys}$ was lower with higher waist circumference or BMI (Figure 5). Among participants \geq 80 years of age, those whose preserved eGFR_{cr} was confirmed using eGFR_{cvs} had a lower prevalence of anemia, elevated hsCRP, and albuminuria (Table IX). In the younger age groups, those with preserved eGFR_{cr} confirmed using eGFR_{cvs} had a lower prevalence of each concurrent CKD complication. Within each age group, a preserved eGFR_{cr} confirmed versus not confirmed using $\mathrm{eGFR}_{\mathrm{cys}}$ was associated with a lower HR for all-cause mortality (Table X).

Discussion

In the current study, 92.5% of participants \geq 80 years of age with reduced eGFR_{cr} had reduced eGFR_{cvs}, as compared with 85.7% and 76.5% of those 65 to 79 and < 65 years of age, respectively. Among participants \geq 80 years of age, those in whom reduced eGFR_{cr} was confirmed by eGFR_c had a higher prevalence of several concurrent CKD complications and increased risk for all-cause mortality as compared with those in whom reduced eGFR_{cr} was not confirmed. These data suggest that additional testing with cystatin-C to confirm reduced eGFR_r, may not be needed among the oldest old, since the vast majority of these individuals have reduced eGFR_{cys}

The 2012 KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD recommends using serum creatinine in calculating eGFR in clinical practice to identify individuals at high risk for concurrent CKD complications, renal disease progression, and all-cause mortality [9]. In the general population, both $eGFR_{cr}$ and $eGFR_{cvs}$ show similar performance for estimating measured GFR [13]. However, among the oldest old, eGFR, may overestimate measured GFR while $\mathsf{eGFR}_{_{\mathsf{cvs}}}$ may underestimate it. For example, in

Preserve not confir eGf				•	•	
	ved eGFR _{cr} irmed using GFR _{cvs}	Preserved eGFR _{cr} confirmed using eGFR _{crs}	Preserved eGFR _c not confirmed using eGFR _{os}	Preserved eGFR _c confirmed using eGFR _{cos}	Preserved eGFR _c not confirmed using eGFR _{os}	Preserved eGFR _{cr} confirmed using eGFR _{cvs}
Number of participants (%) ^a 847	7 (6.3)	12,534 (93.7)	1,899 (19.3)	7,930 (80.7)	572 (45.4)	687 (54.6)
Age, mean (SD) [years] 59.2	2 (4.0)	57.0 (5.0)	72.0 (4.1)	70.3 (4.0)	83.2 (3.0)	82.7 (2.7)
Men, n (%) 259 () (30.6)	5,481 (43.7)	769 (40.5)	4,002 (50.5)	269 (47.0)	365 (53.1)
Black, <i>n</i> (%) 378 (3 (44.6)	5,327 (42.5)	646 (34.0)	3,067 (38.7)	167 (29.2)	252 (36.7)
Region of residence, n (%):						
Stroke belt (buckle states) 200 () (23.6)	2,701 (21.5)	420 (22.1)	1,559 (19.7)	99 (17.3)	123 (17.9)
Stroke belt (non-buckle states) 314 (t (37.1)	4,540 (36.2)	658 (34.7)	2,690 (33.9)	169 (29.6)	212 (30.9)
Other contiguous US states 333 (3 (39.3)	5,293 (42.2)	821 (43.2)	3,681 (46.4)	304 (53.1)	352 (51.2)
Less than high school, n (%) 119 () (14.1)	980 (7.8)	344 (18.1)	1,118 (14.1)	98 (17.2)	126 (18.4)
No physical activity, n (%) 382 (2 (45.9)	3,712 (30.0)	831 (44.5)	2,368 (30.4)	268 (47.8)	262 (39.0)
Current smoking, n (%) 248 (3 (29.4)	2,266 (18.2)	279 (14.8)	803 (10.2)	29 (5.1)	16 (2.4)
History of CHD, <i>n</i> (%) 187 (7 (22.6)	1,312 (10.7)	532 (28.5)	1,472 (18.9)	175 (31.3)	161 (24.0)
History of stroke, n (%) 72 (2 (8.5)	485 (3.9)	192 (10.2)	440 (5.6)	52 (9.2)	58 (8.5)
Diabetes, <i>n</i> (%) 277 (7 (32.9)	2,145 (17.2)	534 (28.3)	1,542 (19.6)	108 (19.0)	92 (13.4)
High waist circumference, n (%) 623 (3 (74.3)	5,924 (47.5)	1,157 (61.3)	3,462 (43.9)	223 (39.3)	231 (33.8)
Body mass index, n (%) [kg/m ²]:						
< 18.5 6 (((0.7)	113 (0.9)	23 (1.2)	83 (1.1)	7 (1.2)	13 (1.9)
18.5 to < 25.0 84 (i	(10.3)	2,725 (21.9)	360 (19.1)	2,152 (27.2)	210 (37.0)	282 (41.3)
25.0 to < 30.0 201 (l (24.5)	4,444 (35.6)	636 (33.7)	3,263 (41.3)	233 (41.0)	289 (42.3)
≥ 30.0 528 (3 (64.5)	5,183 (41.6)	866 (46.0)	2,405 (30.4)	118 (20.8)	99 (14.5)
Taking statins, n (%) 268 (3 (31.6)	3,100 (24.7)	710 (37.4)	2,820 (35.6)	175 (30.6)	204 (29.7)

Table VII. Baseline characteristics of REGARDS participants whose preserved eGFR^a was confirmed versus not confirmed using eGFR_{os} stratified by age

Table VIII. Percentage of REGARDS participants whose preserved $eGFR_{cr}$ was confirmed using $eGFR_{BIS1}$ or $eGFR_{BIS2}$ stratified by age

eGFR	< 65 years (n = 13,381)	65 to 79 years (n = 9,829)	≥ 80 years (n = 1,259)	P-value
	N (%)	N (%)	N (%)	
eGFR _{cr,cys}	13,077 (97.7)	9,088 (92.5)	963 (76.5)	< 0.001
eGFR _{BIS1}	13,211 (98.7)	8,106 (82.5)	554 (44.0)	< 0.001
eGFR _{BIS2}	13,366 (99.9)	9,236 (94.0)	775 (61.6)	< 0.001

eGFR – estimated glomerular filtration rate, REGARDS – Reasons for Geographic And Racial Differences in Stroke. Preserved $eGFR_{cross}$ confirmed using $eGFR_{cross}$, $eGFR_{BIS1}$ or $eGFR_{BIS2}$ were defined as $eGFR_{cross}$ and $eGFR_{cross}$, $eGFR_{BIS1}$ or $eGFR_{BIS2} \ge 60$ ml/min/1.73 m², respectively. Equations for $eGFR_{cross}$, $eGFR_{cross}$, $eGFR_{cross}$, $eGFR_{BIS1}$ or $eGFR_{cross}$, $eGFR_{BIS1}$ and $eGFR_{BIS2}$ are shown in Table I.

Figure 5. Percentage of REGARDS participants \geq 80 years of age with preserved eGFR_{cr} for whom this result was confirmed using eGFR_{cr} stratified by waist circumference and body mass index

 $eGFR_{cr}$ – estimated glomerular filtration rate using serum creatinine, $eGFR_{cys}$ – estimated glomerular filtration rate using serum cystatin-C, REGARDS – REasons for Geographic And Racial Differences in Stroke. Preserved eGFR was defined as eGFR \geq 60 ml/ min/1.73 m². High waist circumference was defined as > 102 cm among males and > 88 cm among females.

a cohort of 805 old adults (mean age: 80.3 years) from Iceland with a mean measured GFR of 64 ml/ min/1.73 m², the mean eGFR_{cr} and eGFR_{cys} were 68 and 61 ml/min/1.73 m², respectively [18]. Additionally, in a prior study of adults \geq 80 years of age, Van Pottelbergh *et al.* reported that the mean eGFR was lower when calculated using serum cystatin-C (54 ml/min/1.73 m²) as compared with using serum creatinine in conjunction with the CKD-EPI equation (61 ml/min/1.73 m²) [19]. Our results are consistent with these prior studies and demonstrate that a very high percentage of individuals \geq 80 years of age have reduced eGFR based on serum creatinine confirmed when using cystatin-C-based eGFR.

Prior studies have reported that cystatin-C could be used as an additional test to identify a sub-group of individuals with reduced eGFR_{cr} who have lower risk for all-cause mortality and CKD complications [13, 20, 21]. Peralta *et al.* reported that reduced eGFR_{cr} is only associated with higher risk for all-cause mortality if confirmed using serum cystatin-C [20]. Shlipak *et al.* reported that using cystatin-C as a confirmatory test may rule out reduced eGFR in about 42% of individuals with eGFR_{cr} 45 to 59 ml/min/1.73 m², and that

these individuals have a 34% and 80% lower risk for all-cause mortality and end stage renal disease, respectively, as compared to those for whom a reduced eGFR is confirmed via cystatin-C [21]. However, the analysis conducted by Shlipak et al. included a small proportion of oldest old (the mean age was 60 years), and the results were not reported stratified by age. Using cystatin-C for the confirmation of a reduced eGFR_{cr} could be important in circumstances when serum creatinine-based estimations are less accurate (e.g., in those with reduced muscle mass), as suggested by the 2012 KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease [9]. There is concern that serum creatinine may be a poor marker of renal function among the oldest old as they may be more likely to have reduced muscle mass or sarcopenia. Unlike serum creatinine, serum cystatin-C is independent of muscle mass and may provide a better estimate for GFR among the oldest old [22]. However, results from the current analysis suggest that measuring cystatin-C for the confirmation of reduced eGFR_{rr} is not needed in this population, regardless of their waist circumference or BMI. This is important considering the high prevalence

Table IX. Prevalence of concur	rent CKD complicatior	ıs among participants	whose pres	erved eGFR _{er} was con	firmed versus not cor	nfirmed using	g eGFR _{oys} stratified by	age	
Parameter		< 65 years		Q	5 to 79 years		> 80	years	<i>P</i> -value
	Preserved eGFR _c not confirmed using eGFR _{cvs}	Preserved eGFR _a confirmed using eGFR _{evs}	<i>P</i> -value	Preserved eGFR _{cr} not confirmed using eGFR _{crs}	Preserved eGFR _{cr} confirmed using eGFR _{ovs}	<i>P</i> -value	Preserved eGFR _c not confirmed using eGFR _{cs}	Preserved eGFR _c confirmed using eGFR _{cvs}	
Number of participants:	847	12,534		1,899	7,930		572	687	
Hypertension	77.6%	49.3%	< 0.001	73.5%	59.5%	< 0.001	64.7%	62.4%	0.42
Serum albumin < 3.8 g/dl	19.4%	7.0%	< 0.001	18.1%	9.6%	< 0.001	20.0%	15.4%	0.07
Anemia	23.5%	9.2%	< 0.001	20.6%	11.3%	< 0.001	23.3%	15.1%	0.008
hsCRP > 3 mg/l	64.5%	39.8%	< 0.001	50.9%	34.5%	< 0.001	43.2%	26.1%	< 0.001
ACR > 30 mg/g	25.9%	9.5%	< 0.001	22.6%	11.8%	< 0.001	23.9%	15.3%	0.001
ACR – albumin : creatinine ratio, CKD – 2 60 ml/min/1.73 m ² . Preserved $eGFR_{\sigma}$ as systolic blood pressure \geq 140 mm H females, respectively [15].	chronic kidney disease, e not confirmed using eGF g, diastolic blood pressu	eGFR – estimated glomer R _{os} was defined as eGFK e ≥ 90 mm Hg, or self-re	ular filtration cr ≥ 60 ml/mir ported use of	ate, hsCRP – high sensi /1.73 m² and eGFR _{os} <	bility C-reactive protein. 50 mUmin/1.73 m². Equc ations. Anemia was defi	Preserved eG ations for eGF ned as hemog	R _c confirmed using eGF c and eGFR _{os} are show lobin concentration < 1:	R _{9s} was defined as eGF n in Table I. Hypertensio 3.0 g/dl and < 12.0 g/dl	R _a and eGFR ₉₅ n was defined for males and
Table X. Age specific hazard re	atios (95%CI) for all-ca	use mortality associa	ted with pre	served eGFR _{cr} confirm	ned versus not confirn	ned using eC	IFR _{cys}		

Parameter	< 65 y	ears	65 to 79) years	≥ 80 y	ears	P-value ^a
	Preserved eGFR _a not confirmed using eGFR _{cos}	Preserved eGFR _{cr} confirmed using eGFR _{os}	Preserved eGFR _{cr} not confirmed using eGFR _{vs}	Preserved eGFR _a confirmed using eGFR _{ess}	Preserved eGFR _c not confirmed using eGFR _{cs}	Preserved eGFR _c confirmed using eGFR _{ovs}	
Deaths/participants	600/13	3,381	1,237/	9,829	376/1	,259	
Hazard ratio (95% CI):							
Model 1	1 (ref)	0.21 (0.17–0.26)	1 (ref)	0.43 (0.37–0.49)	1 (ref)	0.50 (0.40–0.63)	< 0.001
Model 2	1 (ref)	0.32 (0.25–0.41)	1 (ref)	0.57 (0.50–0.66)	1 (ref)	0.54 (0.43–0.69)	< 0.001
Model 3	1 (ref)	0.41 (0.32–0.53)	1 (ref)	0.66 (0.57–0.76)	1 (ref)	0.61 (0.48–0.78)	0.001
95% CI – 95% confidence interval,	ACR – albumin : creatinine ra	tio, CHD – coronary heart	disease, eGFR – estimated gl	omerular filtration rate, hs	:CRP – high sensibility C-reac	tive protein. ªTest for interac	tion for consistency of

hazard ratios across age strata. Preserved eGFR was defined as eGFR ≥ 60 mUmin/1.73 m². Reduced eGFR was defined as eGFR < 60 mUmin/1.73 m². Calculations for eGFR, and eGFR, are shown in Table 1. Model 1: Includes adjustment for age, race, gender, region of residence and eGFR, Model 2: Includes adjustments in Model 1 plus adjustment for education level, physical activity, smoking, history of CHD, stroke, diabetes, waist circumference and statin use. Model 2: Includes adjustment or serum abumin < 3.8 g/dl, anemia, hsCRP > 3 mg/l and ACR > 30 mg/g.

of reduced $eGFR_{cr}$ among the oldest old [9, 23] and the relatively high cost of measuring serum cystatin-C [24].

In secondary analyses, we found that 45.4% of participants \geq 80 years of age with preserved eGFR_{cr} had reduced eGFR_{cys} and this proportion was higher as compared with younger adults. Individuals \geq 80 years of age with preserved eGFR_{cr} but reduced eGFR_{cys} had a higher prevalence of anemia, elevated hsCRP, and albuminuria and an increased risk for all-cause mortality compared to those whose preserved eGFR_{cr} was confirmed using eGFR_{cys}. Future studies should assess the costs and benefits of measuring cystatin-C among the oldest old with preserved eGFR_{cr}.

Results from the present study should be interpreted in the context of known and potential limitations. First, eGFR was calculated using data from a single study visit. This may have led to potential misclassification of participants. Second, the observational study design prevents inferring a causal relationship. This is especially important for the cross-sectional analysis of concurrent CKD complications where some conditions may have preceded kidney function impairment. Finally, the REGARDS study excluded individuals residing in nursing homes, which may reduce the generalizability of our results, particularly among the oldest old. Strengths of the current analysis include the large number of participants \geq 80 years of age with serum creatinine and cystatin-C measured at baseline. Additionally, the REGARDS study enrolled participants residing in all 48 contiguous states and the District of Columbia.

In conclusion, serum creatinine is recommended to routinely evaluate renal function in clinical practice. However, there is concern that serum creatinine may be a poor marker of renal function at older ages. In the current study, the vast majority of participants \geq 80 years of age with reduced eGFR_{cr} also had reduced eGFR_{crs}. These results suggest that cystatin-C does not need to be measured to confirm reduced eGFR_{cr} among the oldest old.

Acknowledgments

This research project is supported by a cooperative agreement UO1 NSO41588 from the National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Service. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health. Representatives of the funding agency have been involved in the review of the manuscript but not directly involved in the collection, management, analysis or interpretation of the data. Additional support was provided by an investigator-initiated grant-in-aid from Amgen Inc. to DGW. Amgen did not have any role in the design and conduct of the study, the collection, management, data analysis, or interpretation of the data, or the preparation or approval of the manuscript. Additional support was provided through the National Institute on Aging (R03AG042336-01) and the T. Franklin Williams Scholarship Award (funding provided by: Atlantic Philanthropies, Inc, the John A. Hartford Foundation, the Association of Specialty Professors, the American Society of Nephrology and the American Geriatrics Society) and the US Department of Veterans Affairs (1IK2CX000856-01A1). The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at http://www.regardsstudy.org.

Conflict of interest

DGW and PM have received grant support from Amgen Inc. LDC, RMT, OMG, SJ and CBB have no conflicts of interest to disclose.

References

- 1. Bowling CB, Sharma P, Fox CS, O'Hare AM, Muntner P. Prevalence of reduced estimated glomerular filtration rate among the oldest old from 1988-1994 through 2005-2010. JAMA 2013; 310: 1284-6.
- 2. Bowling CB, Sharma P, Muntner P. Prevalence, trends and functional impairment associated with reduced estimated glomerular filtration rate and albuminuria among the oldest-old U.S. adults. Am J Med Sci 2014; 348: 115-20.
- 3. Bowling CB, Inker LA, Gutierrez OM, et al. Age-specific associations of reduced estimated glomerular filtration rate with concurrent chronic kidney disease complications. Clin J Am Soc Nephrol 2011; 6: 2822-8.
- Kurella Tamura M, Wadley V, Yaffe K, et al. Kidney function and cognitive impairment in US adults: the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Am J Kidney Dis 2008; 52: 227-34.
- 5. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073-81.
- 6. Muntner P, Bowling CB, Gao L, et al. Age-specific association of reduced estimated glomerular filtration rate and albuminuria with all-cause mortality. Clin J Am Soc Nephrol 2011; 6: 2200-7.
- Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296-305.
- Malyszko J, Bachorzewska-Gajewska H, Malyszko J, laina-Levin N, Kobus G, Dobrzycki S. Markers of kidney function in the elderly in relation to the new CKD-EPI formula for estimation of glomerular filtration rate. Arch Med Sci 2011; 7: 658-64.

- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013; 3: 1-150.
- 10. Rosenberg IH, Roubenoff R. Stalking sarcopenia. Ann Intern Med 1995; 123: 727-8.
- 11. Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 2013; 20: 1-10.
- Howard VJ, Cushman M, Pulley L, et al. The REasons for Geographic And Racial Differences in Stroke Study: objectives and design. Neuroepidemiology 2005; 25: 135-43.
- Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012; 367: 20-9.
- 14. Schaeffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012; 157: 471-81.
- Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. Diagnosis and evaluation of anemia in CKD. Kidney Int Suppl. 2012; 2: 288-91.
- 16. White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011; 30: 377-99.
- 17. Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 338: b2393.
- Fan L, Levey AS, Gudnason V, et al. Comparing GFR estimating equations using cystatin C and creatinine in elderly individuals. J Am Soc Nephrol 2015; 26: 1982-9.
- 19. Van Pottelbergh G, Vaes B, Adriaensen W, et al. The glomerular filtration rate estimated by new and old equations as a predictor of important outcomes in elderly patients. BMC Med 2014; 12: 27.
- 20. Peralta CA, Katz R, Sarnak MJ, et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications. J Am Soc Nephrol 2011; 22: 147-55.
- 21. Shlipak MG, Matsushita K, Arnlov J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 2013; 369: 932-43.
- 22. Vinge E, Lindergard B, Nilsson-Ehle P, Grubb A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 1999; 59: 587-92.
- 23. Grams ME, Juraschek SP, Selvin E, et al. Trends in the prevalence of reduced GFR in the United States: a comparison of creatinine- and cystatin C-based estimates. Am J Kidney Dis 2013; 62: 253-60.
- Shlipak MG, Mattes MD, Peralta CA. Update on cystatin C: incorporation into clinical practice. Am J Kidney Dis 2013; 62: 595-603.